How Can We **Detect Toxicity for Korean**?: Toxic Comments Classification for Korean Movie Comments

20150497 Wi Heeju

Introduction

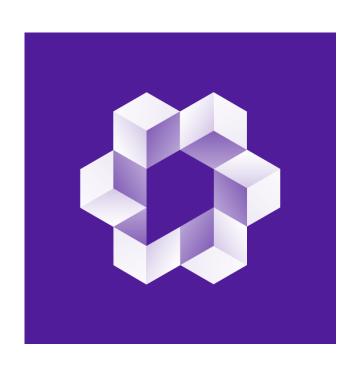
Motivation

Why Al Needed?

- Too many comments updated per second,
 so human cannot check all the comments.
- 2. We have to detect the toxicity of the comments **before human see it**, to prevent the harassment.
- 3. Everyone have **different baseline** of considering the toxicity of the comment, using classifier can be a solution to remove controversial problem.
- 4. Toxicity depends on **the context** of the comment, so we have to consider not only the word itself but also the context.

Introduction

For English..



Jigsaw (Google)

built Perspective API

to score the toxicity of the comment

Toxic Comments Classification Challenge

Featured Prediction Competition

\$35,000 Prize Money

Toxic Comment Classification Challenge

Identify and classify toxic online comments

Jigsaw/Conversation Al 4,550 teams 2 years ago

Dataset for the Challenge

- •comments from Wikipedia's talk page edits
- •classified in 6 categories(toxic, severe toxic, obscene, threat, insult, identity hate)
- •160K comments for training set

Introduction

Even Perspective...

Jigsaw, preparing for Korean service

구글 자회사, 한국어 악플 차단도 준비

제라드 코엔 직소 대표 기자회견

2017.09.13

직소 대표인 제라드 코엔(Jared Cohen)은 한국어에 대한 충분한 데이터가 모이면 한국어 서비스도 할 의향이 있음을 밝혔다.

코엔은 12일 대전 컨벤션센터에서 가진 기자회견에서 "현재 스페인어는 준비 중이고 한국어에 대한 충분한 데이터가 모이면 하겠다"고 말했다.

For Korean..?

No Public Korean Toxic comments Data

No Public Korean Toxic Comments Classifier

Surprisingly little work related to Korean hate speech

Research Statement

Making Korean Toxic Classifier using Korean Movie comments

Definitions

Hate speech

text to **foster hate** against specific individuals/organizations, by causing a sounding board effect, which may critically damage the targets of the hate campaign, by using both psychological and physical violence.

Cyberbullying

an **aggressive**, **intentional** act or behavior that is carried out by a group or an individual, using electronic forms of contact, repeatedly and over time **against a victim** who cannot easily defend him or herself.

Ex) cyberstalking, trolling

Online harassment

All of harassment can be done online.

Ex) Spam mail, instant messages, website entries

Toxic comments

Looking at toxicity of online comments (Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen at scale.) related research includes the investigation of hate speech (Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017. Deep learning for hate speech detection in tweets. In WWW.; Pete Burnap and Matthew L. Williams. 2016. Us and them: identifying cyber hate on twitter across multiple protected characteristics; Fabio Del Vigna, Andrea Cimino, Felice Dell'Orletta, Marinella Petrocchi, and Maurizio Tesconi. 2017. Hate me, hate me not: Hate speech detection on facebook. Automated hate speech detection and the problem of offensive language), online harassment (Golbeck et al., 2017. A large labeled corpus for online harassment research.), abusive language (Yashar Mehdad and Joel R. Tetreault. 2016. Do characters abuse more than words?; Ji Ho Park and Pascale Fung. 2017. One-step and two- step classification for abusive language detection on twitter.), cyberbullying (Dadvar et al., 2013; Dinakar et al., 2012; Hee et al., 2015; Zhong et al., 2016) and offensive language (Chen et al., 2012; Xiang et al., 2012).

6 categories of Toxicity

label	example
severe_toxic (심각)	"good job for sucking dick dick trophy i dont have to do shit u say . and ur the worlds best dick sucker" (+obscene)
obscene (외설적인)	"DUDE!!! CALM THE FUCK DOWN!!!"
threat (협박)	"you just wait, your death is near"
insult (모욕)	"Go Fuck Yourself Get a job, you hippie shitbag." (+obscene)
identity_hate (혐오)	"Hurry and ban me or protect this page you homo bitches" (+obscene, insult)

Looking at toxicity of online comments (Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen at scale.) related research includes the investigation of hate speech (Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017. Deep learning for hate speech detection in tweets. In WWW.; Pete Burnap and Matthew L. Williams. 2016. Us and them: identifying cyber hate on twitter across multiple protected characteristics; Fabio Del Vigna, Andrea Cimino, Felice Dell'Orletta, Marinella Petrocchi, and Maurizio Tesconi. 2017. Hate me, hate me not: Hate speech detection on facebook. Automated hate speech detection and the problem of offensive language), online harassment (Golbeck et al., 2017. A large labeled corpus for online harassment research.), abusive language (Yashar Mehdad and Joel R. Tetreault. 2016. Do characters abuse more than words?; Ji Ho Park and Pascale Fung. 2017. One-step and two- step classification for abusive language detection on twitter.), cyberbullying (Dadvar et al., 2013; Dinakar et al., 2012; Hee et al., 2015; Zhong et al., 2016) and offensive language (Chen et al., 2012; Xiang et al., 2012).

Prior Research On Korean Toxicity comments

Difference between Korean and English toxic comments (2019)

1. Different using rate of 1^{st} person **pronoun** and 3^{rd} person pronoun.

English toxic comments: use of 3rd person pronoun > use of 1st person pronoun

Korean toxic comments: use of 3rd person pronoun = use of 1st person pronoun

2. In specific(social, religion, sadness, depression) topic, having different rate of toxic comments

English toxic comments > English civil comments

Korean toxic comments < Korean civil comments

3. Having different frequency of specific vocabularies (body, bio, ingest)

Korean toxic comments > frequency of English toxic comments

Difference between Korean and English toxic comments (2019)

1. Different using rate of 1^{st} person **pronoun** and 3^{rd} person pronoun.

English toxic comments: use of 3rd person pronoun > use of 1st person pronoun

Korean toxic comments: use of 3rd person pronoun = use of 1st person pronoun

2. In specific(social, religion, sadness, depression) topic, having different rate of toxic comments

English toxic comments > English civil comments

Korean toxic comments < Korean civil comments

3. Having different frequency of specific vocabularies (body, bio, ingest)

Korean toxic comments > frequency of English toxic comments

Translate Korean into English and using English toxic classifier wouldn't work!

Morpheme + NN Model (2019.07)

표 5. 1:1 데이터셋 : 분류 모델의 성능 비교

Table 5. 1:1 Dataset: Performance Comparison of Classification Mo

		Accı	iracy		Precision				
	RNN	LSTM	GRU	Avg.	RNN	LSTM	GRU	Avg.	
Noun	57.14	76.19	75.24	69.52	56.36	74.55	74.07	68.33	
Noun Adjective	60.38	80.19	74.53	71.70	58.93	76.27	82.05	72.42	
Noun Adjective verb	68.87	77.36	77.36	74.53	67.27	71.88	78.00	72.38	
All parts of speech	62.26	77.36	73.58	71.07	58.82	71.88	65.38	65.36	
Average	62.16	77.78	75.18		60.35	73.65	74.88		

Step 1. **morpheme analysis**Konlpy API - okt

Step 2. comparing 3 NN model RNN, LSTM, GRU

- Get n. / n. + adj / n.+ adj.+v. / all
- **13K** comments from 10 news on same topic.
- Toxic comments rate = 2 %
- LSTM is Greatest in accuracy (80.19%)

My Research

Research Structure

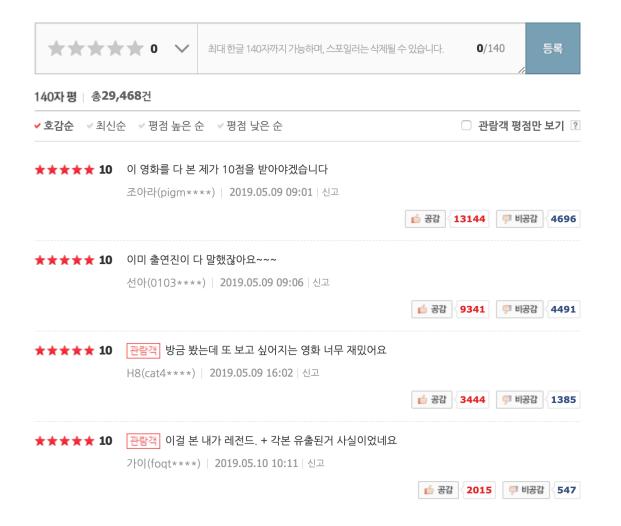
Research Flow

- 1. Collect the data from Naver Movie
- 2. Labeling the data CrowdSourcing
- 3. Make Korean word vector by character level & jamo level
- 4. Implement text classification model textCNN
- 5. Evaluation

Collect the data

Crawling

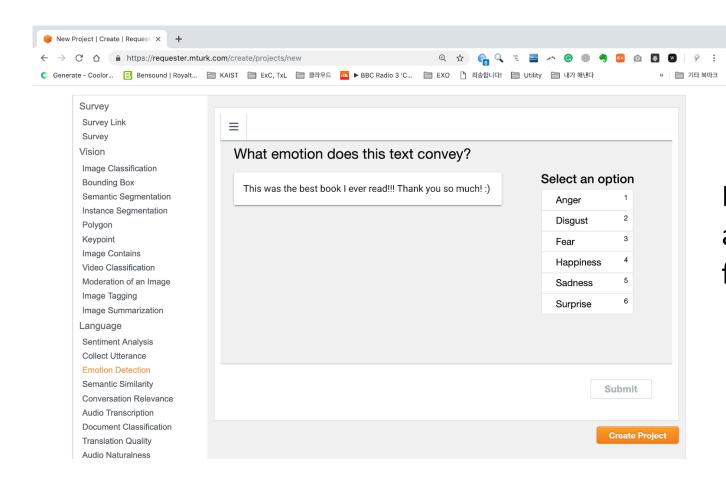
From 15 movies, collected 120K comments



Movie Title	Genre	# of comments
걸캅스	코미디/액션	27972
보헤미안	드라마	38846
덩케르크	액션/드라마/스릴러/전쟁	17289
캡틴마블	액션/모험/SF	35260
주토피아	애니메이션/액션/모험/코미디/가족	17680
님아, 그 강을 건너지 마오	다큐멘터리	14651
아가씨	스릴러/드라마	22785
검은사제들	미스터리/드라마	20452
위대한 쇼맨	드라마/뮤지컬	13380
겨울왕국	애니메이션/모험/코미디/가족/판타지/ 뮤지컬	35125
다크나이트	액션/범죄/드라마/미스터리	26156
아바타	SF/모험/액션/전쟁	40992
아이언맨	SF/액션/드라마/판타지	10566
하울의 움직이는성	애니메이션/판타지	11552
타이타닉	멜로/로맨스/드라마	20260

Label the data

Crowdsourcing



Existing Crowdsourcing platforms are **NOT easily accessible** for **Korean Users**

MTURK: Amazon data crowdsourcing site

Label the data

Crowdsourcing

KAIST 전산학부 CS492수업의 프로젝트로 한글 악성 댓글 판독기를 구현하고 있습니다. 시간이 나시면 아래 버튼을 눌러 악성 댓글 판독기 제작에 도움을 주세요^ ^ KAIST 전산학부 CS492수업의 프로젝트로 한글 악성 댓글 판독기 있습니다. 시간이 나시면 아래 버튼을 눌러 악성 댓글 판독기 제공 주세요^ ^

KAIST 전산학부 CS492수업의 프로젝트로 한글 악성 댓글 판독기를 구현하고 있습니다. 시간이 나시면 아래 버튼을 눌러 악성 댓글 판독기 제작에 도움을 주세요^_^

얼마나 다양한 악성댓글이 있을까요? 궁금하지 않으신가요~~

다음 나오는 악성 댓글에 대하여 악성 댓글인지 아닌지를 판별해 주세요!

START

악성 댓글인가요?

댓글 가져오는중...

악성 댓글이다

악성 댓글이 아

악성 댓글인가요?

가볍게 보러가서 조금은 무거운 생각을 하게되는 그런 영화입니다. 스토리도 재밌고 지금 이 시점에 필요한 그런 영화라고 생각해요. 앞으로도 이런 영화가 많이 나왔으면 좋겠네요!

악성 댓글이다

악성 댓글이 아니다

Used

- github pages
- google firebase

KAIST 전산학부 CS492수업의 프로젝트로 한글 악성 댓글 판독기를 구현하고 있습니다. 시간이 나시면 아래 버튼을 눌러 악성 댓글 판독기 제작에 도움을

어떤 종류의 악성 X 댓글인가요? 중복 선택할 수 있습니다.

■ 심한 욕이 포함된 댓글

남의 인격을 무시하는 모욕적인 말 예) 시발새끼가, 영화 개같이 만들었네

□ 외설적인 댓글

사람의 성욕을 함부로 자극하여 난잡함 예) 좇같은, 니 애미 창녀

□ 협박적인 댓글

겁을 주며 압력을 가하여 남에게 억지로 어떤 일을 하도록 하는 것

예) 지옥에서 보자, 밤길에 뒷통수 조심해라

■ 모욕적인 댓글

깔보고 욕되게 함 예) 니 엄마 우리집 청소부 ㅎ. 내가 해도 니보단 잘하겠다

■ 혐오적인 댓글

싫어하고 미워함 예) 으 돼지냄새 여기까지 나, 게이새낀가?

기타 이유 직접 작성

해당하는 이유가 위에 없는 것 같다면, 이유를 간단히 적어주세요.

제출하기!

crowdsourcing

Collected Data

Movie Title	Total	Toxic
My Love	236	39
Priests	246	21
Showman	257	14
Titanic	284	40
Zootopia	146	12
Avatar	267	33
Bohemian	263	16
Captain	296	68
Darkknight	300	53
Dunkirk	187	22
Frozen	257	14
Girlcops	312	63
Handmaiden	181	79
Howl	209	14
Ironman	241	13
15 movies	3682	501

Total 3682 comments 13% toxic comments

Sample toxic comments

- •강동원 빠순이들이 전우치랑 비교하네 ㅉㅉ
- •시간이 아까운 게이영화
- •?? 이거 ㅋㅋ 댓글에 10점따리 준놈들 내용 읽어보니깐 **쿵쾅쿵쾅** 분들인거 다 알겠는데? ㅋㅋ 왠일로 10점이 많지? 했는데 역시.. 쿵쾅쿵쾅분들땜에 보기싫어서 안볼렵니다
- •1점준 놈들은 자전차왕 읍읍읍 개꿀잼일테니 보러가세요
- •도태돼서 안 보고 방구석에서 발광하는 거잖스 ㅎㅋ
- •박평식 저 관심병환자새끼는 그냥 묶어놓고 패야된다
- •10점 주신분들 영혼만 보내서 감명깊게보고 n차관람 하신다는거죠?
- •10점은 오바고 8점짜리 준수한 영화. 이게 라푼젤보다 잘만들었다고 하는건 이해불가. 스토리 자체가 라푼젤에 비해선 한참 딸림.
- •개꿀잼이다 형은 **이번에세번째로보러간다**. 엘사갓찬양해 별점낮은애들은걍.집에서 토렌트로본그지넘들임 ㅉㅉ 개명작
- •황정민 오달수 이경영같이 믹스커피+담배냄새 절거같은 아재들만 주구장창 보다가 이런 꽃미남들이 단체로 나오는 영화봐서 좋았습니다! 눈정화 잇힝^^
- •개봉되서는 언될 전형 작품성도 없고 최악의 쓰레기 영화네요
- •초딩들을 위한영화 3류영화다

Preprocess the data

- 1. Make continuous punctuation marks(?!,.) into one punctuation mark.
- **2. Do proper spacing** which have more than 5 characters.
- **3. Remove useless comments** such as containing only hyperlinks or any random characters
 - -> 5 comments were removed.

Make word vector

Is preprocessing of text really worth your time for toxic comment classification?(2018)

		F1-score			Overall Accuracy				Total Misclassified Comments (out of 15958			
Preprocessing Steop	Logit	NBSVM	fastText-BiL	XGBoost	Logit	NBSVM	fastText-BiL	XGBoost	Logit	NBSVM	fastText-BiL	XGBoost
Raw	0.7407	0.7957	0.7906	0.5727	0.9720	0.9773	0.9775	0.9196	6992	5946	6217	9864
To_lower	0.7352	0.7936	0.8055	0.5757	0.9715	0.9773	0.9787	0.9196	7112	5974	5882	9809
Remove_whitespaces	0.7407	0.7957	0.7903	0.5727	0.9720	0.9773	0.9774	0.9196	6992	5946	6206	9864
Remove_leaky	0.7405	0.7951	0.7916	0.5735	0.9721	0.9773	0.9766	0.9198	7000	5958	6205	9849
trim_words_len	0.7401	0.7958	0.7906	0.5726	0.9720	0.9773	0.9774	0.9197	7009	5946	6230	9860
Strip_non_printables	0.7402	0.7959	0.7947	0.5729	0.9719	0.9772	0.9778	0.9197	7005	5940	6168	9863
Replace_contractions	0.7399	0.7951	0.7885	0.5736	0.9720	0.9773	0.9769	0.9201	7014	5965	6242	9844
Replace_acronyms	0.7393	0.7934	0.7876	0.5738	0.9719	0.9769	0.9775	0.9198	7038	6003	6287	9879
Remove_stopwords	0.7302	0.7860	0.7904	0.5643	0.9706	0.9733	0.9773	0.9007	7186	6209	6237	10013
Remove_rare_words	0.7297	0.7849	0.7735	0.5608	0.9681	0.9719	0.9737	0.9142	7257	6243	6556	10048
Remove_non_alnum_chars	0.7307	0.7885	0.8028	0.5680	0.9705	0.9761	0.9791	0.9163	7199	6105	5935	9935
Remove_non_alpha_chars	0.7337	0.7905	0.8040	0.5697	0.9709	0.9762	0.9796	0.9165	7145	6068	5897	9905
Remove_non_alpha_words	0.6577	0.7084	0.7208	0.4824	0.9462	0.9481	0.9549	0.8866	8744	8012	7859	11196
Regex_maping_black_list	0.7488	0.7913	0.8006	0.6252	0.9736	0.9775	0.9796	0.9303	6854	6081	5950	9083
Check_if_name	0.7407	0.7957	0.7947	0.5727	0.9720	0.9773	0.9774	0.9196	6992	5946	6121	9864
Fuzzy_profane_map	0.7422	0.7855	0.7910	0.6082	0.9718	0.9753	0.9775	0.9258	6999	6223	6293	9342
Fuzzy_common_map	0.7438	0.7968	0.7914	0.5794	0.9724	0.9769	0.9774	0.9224	6933	5933	6227	9758
Lemmatize	0.7377	0.7888	0.7918	0.5722	0.9698	0.9734	0.9774	0.9194	7091	6126	6208	9877
Stemming	0.7322	0.7782	0.8023	0.5919	0.9683	0.9715	0.9794	0.9225	7216	6390	5878	9568
URL_info_extract	0.7396	0.7953	0.7828	0.5735	0.9719	0.9773	0.9776	0.9199	7016	5958	6274	9853
PPO-1-lower_ws_trim	0.7351	0.7934	0.8006	0.5735	0.9715	0.9773	0.9783	0.9195	7113	5979	5955	9845
PPO-2-LWTN-Lk	0.7366	0.7926	0.7994	0.5738	0.9716	0.9773	0.9789	0.9193	7078	6003	5947	9839
PPO-3-LWTN-LkCnAc	0.7311	0.7825	0.7961	0.5689	0.9709	0.9760	0.9777	0.9195	7232	6281	6071	9986
PPO-4-LWTN-St	0.7247	0.7826	0.7970	0.5641	0.9702	0.9734	0.9783	0.9007	7291	6266	5994	10010
PPO-5-LWTN-Ra	0.7298	0.7846	0.7932	0.5641	0.9690	0.9733	0.9756	0.9159	7237	6216	6172	9996
PPO-6-LWTN-CoAcStRa	0.7148	0.7647	0.7830	0.5538	0.9660	0.9672	0.9733	0.8958	7569	6754	6433	10251
PPO-7-LWTN-An	0.7240	0.7844	0.8076	0.5694	0.9699	0.9761	0.9801	0.9157	7331	6170	5756	9908
PPO-8-LWTN-Aw	0.7278	0.7859	0.8117	0.5724	0.9702	0.9762	0.9795	0.9161	7260	6139	5715	9862
PPO-9-LWTN-AnAw	0.7278	0.7859	0.8079	0.5724	0.9702	0.9762	0.9802	0.9161	7260	6139	5751	9862
PPO-10-LWTN-CoAcBk	0.7421	0.7815	0.7995	0.6236	0.9727	0.9763	0.9780	0.9306	7024	6327	6043	9161
PPO-11-LWTN-CoAcBkPrCm	0.7466	0.7790	0.7993	0.6302	0.9733	0.9759	0.9778	0.9325	6944	6404	6103	9075
PPO-12-LWTN-CoAcLkBkPrCmNm	0.7477	0.7792	0.8004	0.6305	0.9733	0.9759	0.9775	0.9322	6922	6399	6089	9074
PPO-13-LWTN-CoAcLkAwStSm	0.7292	0.7680	0.8009	0.5871	0.9693	0.9709	0.9778	0.9123	7299	6649	6005	9752
PPO-14-lower_lemma	0.7338	0.7868	0.8038	0.5721	0.9701	0.9743	0.9787	0.9208	7163	6150	5900	9876
PPO-15-lower-AwBkCmSm	0.7519	0.7884	0.8076	0.6348	0.9739	0.9768	0.9786	0.9327	6816	6139	5877	8919

Fig. 4: Results: F1 scores, accuracies and total number of misclassified.

Make Korean word vector using fasttext

1. By character level

- use basic fasttext skipgram.
- build word vector by considering meaning per characters(유,치,뽕,영,화)

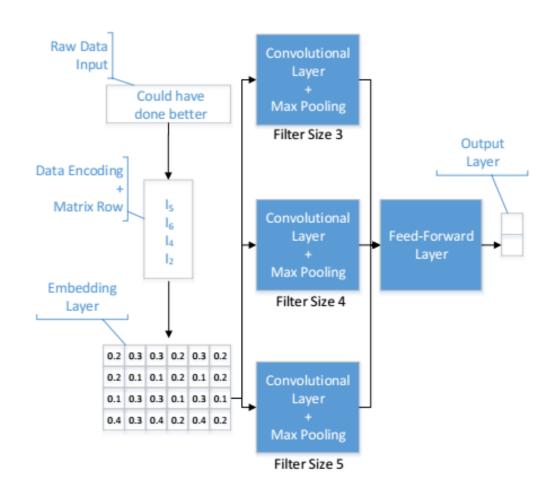
2. By jamo level

- Decompose word by jamo and learn by fasttext skipgram.

- better for semantic and syntactic similarity and analogy tasks.

textCNN model(2018)

- Recently, CNN are being applied to text classification or NLP without using syntactic or semantic knowledge of a language.
- CNN using character-level feature is effective method.



CNN model

textCNN for toxic classification(2018)

Table 1: Mean values and Standard Deviation across all experiments for Accuracy, Specificity and False discovery rate for all Classification Methods.

	Accuracy		Speci	ficity	False disc.rate		
	Mean	Std	Mean	Std	Mean	Std	
CNN_{fix}	0.912	0.002	0.917	0.006	0.083	0.007	
CNN_{rand}	0.895	0.003	0.906	0.015	0.092	0.017	
kNN	0.697	0.008	0.590	0.016	0.335	0.010	
LDA	0.808	0.005	0.826	0.010	0.179	0.009	
NB	0.719	0.005	0.776	0.012	0.250	0.010	
SVM	0.811	0.007	0.841	0.012	0.167	0.012	

Evaluation

Evaluation

Results

	Accuracy	Precision	Recall	F1-score
Jamo + CNN	0.695	0.704	0.708	0.700
Character + CNN	0.813	0.754	0.858	0.801

Average of 5 times random train-test split

• **Test set** civil: toxic = 1: 1

• Train set civil: toxic = 1.1: 1

Parameters used

- Text- CNN: Embedding_dim =300, dropout_keep_rate = 0.85, dev_sample = 10%,
 l2_regularization = 1.0, batch_size = 100, num_epochs= 2500
- Fasttext by jamo-level: skipgram, minCount=1, minjn=3, maxjn=5, minn=1, maxn=4, dim=300, ws=5
- Fasttext by character-level: skipgram, minCount=1, minn=1, maxn=4, dim=300, ws=5

Evaluation

Evaluation

	Accuracy	Precision	Recall	F1-score
Jamo + CNN	0.695	0.704	0.708	0.700
Character + CNN	0.813	0.754	0.858	0.801

- 1. First attempt to use Korean word-vector and CNN model.
- 2. Great performance although it has small data(3k < 13k < 160k).

Future Work

For Better Accuracy

- 1. Get more labeled data
- 2. Adjust the threshold of toxicity from crowdsourcing.
- 3. Adopt Pseudo Labeling Method
- 4. More work on constructing word-vector & CNN parameter fitting

conclusion

Future Work

After getting enough accuracy and data,

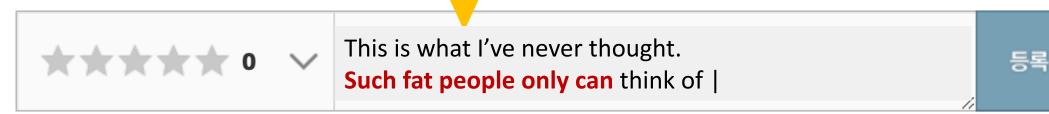
- 1. Follow up advanced English Hate speech research.
- 2. Research on data from Korean SNS platform

Application

Application

1. Alert that specific chunks can make people feel bad.

6200 people might feel bad because of this chunk.



conclusion

Application

- 2. Predict future conversation and avoid the fight.
- 3. Build a typology of antisocial users

conclusion

remaining problems..

Thanks for listening ~ ^_^!