
MiniCS: Critical Section Minimisation in Concurrent
Programming

Hyunsu Kim
KAIST

Daejeon, Rep. of Korea
hyunsu.kim00@kaist.ac.kr

Jaemin Yu
KAIST

Daejeon, Rep. of Korea
platinant@kaist.ac.kr

Doam Lee
KAIST

Daejeon, Rep. of Korea
ehdkacjswo@kaist.ac.kr

Jaemin Choi
KAIST

Daejeon, Rep. of Korea
jmchoi98@kaist.ac.kr

Heeju Wi
KAIST

Daejeon, Rep. of Korea
bb0711@kaist.ac.kr

ABSTRACT
Modern machines consume massive amount of data and deals with
drastic amount of computations, as the era of artificial intelligence.
In the hardware manufacturing industry, developing SoC (System
on a chip) optimized to the computations is one of the main on-
going trends. As a result, multi-core machines are prevalent nowa-
days. Still, thanks to the end of Moore’s law and Dennard’s scaling,
software implementation that synchronizes multiple threads is
required in order to achieve reasonably scalable computing. How-
ever, it is often a fear to write/refactor multi-threaded code due
to its non-deterministic behavior. In order to tame the parallelism
with scalability, using synchronization primitives such as lock and
semaphore is mandatory to prevent race conditions. While which
API to use is rather trivial, it is usually known that setting critical
sections (when to acquire a lock, then when to release the lock)
is not trivial at all. In this work, we tackle such intractability by
applying combination of heuristics for search and static analysis for
rigorous evaluation and correctness. We use genetic algorithm to
traverse over combinatorially explosive search space and analyze
the code statically to detect possible data race. Further descriptions
about the experiments can be found in section 3, and the evaluation
of our progress can be seen in section 4. In sections 1 and 2, we
state the problem in detail and cover basic concepts which might be
unfamiliar to most readers, however crucial to understand our work.
Concluding remarks and possible improvements for the research
are stated in section 5.

1 INTRODUCTION
As the era of artificial intelligence and big data, a program that
runs on single core machine has fundamental limitation in terms
of computation power. In hardware manufacturing industry, de-
veloping SoC optimized to such computations is already on-going
process. Still, thanks to the end of Moore’s law and Dennard’s scal-
ing, software implementation that synchronizes multiple threads is
unavoidable in order to achieve reasonably scalable computing.

There has been an aggressive development of libraries and lan-
guages that exploits concurrency such as TensorFlow, PyTorch,
CUDA, OpenCL [1], and etc. Inside each implementation, concur-
rent programming enables multi-threading, and this is what really
drives the high-level logic to be correct and efficient. Some libraries
hide the complicated logic for concurrency underneath, and some

provides basic API as directives to let programmers fill in the gaps
with their desired logic. Developer of the library in former case,
while any programmer who tries to use the language in latter are
those who really meets the nitty-gritty details of concurrency. Tra-
ditionally, it has been a fear for most system developers to develop
multi-threaded codes. Such aspect can be easily understood by ob-
serving how many stale bugs are still present in many projects (e.g.
Mozilla’s Firefox) related to concurrency.

Multi-threaded codes often comes with the problem called data
race. It indicates the situation of multiple threads accessing the
same memory location simultaneously which is not a intention of
a programmer. Data race results in non-deterministic executions,
which eventually gives wrong output depending on the specific
interleaving order of threads. Such issue can be resolved by im-
posing exclusive locks to prevent simultaneous access from more
than desired number of threads. However, abusing lock will block
other threads’ execution, then lead to longer execution time or even
a deadlock, which is very severe. Further details can be found in
2.1. In our work, we do not rigorously deal with the problem of
deadlocks which is left as one of our possible improvement.

It is important to protect shared memory location using locks
while minimising the interval between acquiring the lock and re-
leasing it. However, it is hard to manually achieve the sweet spot
without data races that probably reveals on runtime. Our project,
MiniCS is a solution tackling the problem in natural setup. We gen-
erate and evolve the population of candidate programs equipped
with synchronization primitives. Then, apply genetic algorithm to
get the best performing program without data race. With that being
said, we come up with the following research questions:

RQ1 How well MiniCS detects the data races?
RQ2 How does MiniCS measure the performance of each
multi-threaded code rigorously?
RQ3How long does it take to find the best performant multi-
threaded code using MiniCS?

By answering to these questions, we suggest our solution in a
more detailed and convincing manner.

2 BACKGROUND
Minimising critical section is one of the most important aspect
when refactoring multi-threaded code. However, it is impossible

CS454 AI Based Software Engineering, 2019 Fall, KAIST Hyunsu Kim, Jaemin Yu, Doam Lee, Jaemin Choi, and Heeju Wi

to compare the performance of any two distinct version of code
by just measuring the execution time. It is hard to guarantee those
measured durations solely depend on each code execution, unless
we take full control over thread scheduling, which is totally up
to operating systems. In order to overcome such issues, we took
approach counting machine instructions especially in Intel x86 ar-
chitecture. Further details about how our evaluations went through
will be mentioned in section 3 and 4. Here, we briefly go over two
concepts that needs to be explained before moving on to details.

2.1 Data race
A data race is a situation where multiple threads try to access shared
data at once, and the result depends on the execution order of the
threads. For example, consider the following code:

1 in t a = 0 ;
2 in t foo () {
3 a ++ ;
4 }

Suppose two threads call the foo function at once. If the threads
do not run concurrently, then the value of a will be 2. However,
this is not always the case when there is concurrency, because a++
actually consists of three steps: reading the value, incrementing
the value, and writing back the value. The following sequence of
actions may occur as a result:

(1) Thread 1 reads the value of a, which is 0.
(2) Thread 2 reads the value of a, which is 0.
(3) Thread 1 increments its value, making it 1.
(4) Thread 2 increments its value, making it 1.
(5) Thread 1 writes 1 into the value of a.
(6) Thread 2 writes 1 into the value of a.
We use locks to prevent this situation. When a thread tries to

acquire a lock, but another thread owns the lock, then it must
wait before the other thread releases the lock. For example, in the
modified code below, two threads would wait for each other to read
the value of verb|a|, increment it, and write it back. This keeps the
global variable from being accessed twice at the same time.

1 in t a = 0 ;
2 in t foo () {
3 p th read_mutex_ lock (&mutex_ lock) ;
4 a ++ ;
5 p thread_mutex_un lock (&mutex_ lock) ;
6 }

2.2 Machine instructions
In compiled languages likeC/C++, each line of code is translated into
multiple machine instructions. For example, consider a++ located at
third line of code snippet in 2.1. It is adding one to integer variable
a. Although it is a single line of code in C, a machine equipped with
Intel x86 processors translates it into the following instructions:

ld $r1, a
add $r1, $r1, 1
st $r1, a

It first loads the value of a from memory into register $r1. Then,
add one to the register value. Finally, it stores the result back to the
memory location of a. Note that these machine instructions are the
commit point for each computation within a machine. It means that
we can ensure there is no thread interleaving while executing each
instruction. In fact, this is the reason why we are safe to count the
number of instructions to measure performance of target program
independent from other programs being executed.

3 EXPERIMENT DESIGN
3.1 Environment setting
MiniCS runs on Linux, requires Python (3.6 or higher) and Clang
(v6.0.0 or higher). Note that gm.cpp requires an external library,
however one can also use pre-compiled binary file, gm. To manually
compile the source code, llvm-devmust be installed into Clang [2].
Our project code is open sourced in Github repository [3], and col-
laborators are as follows: Hyunsu Kim (hyunsukimsokcho), Jaemin
Yu (planetarynebula), Doam Lee (ehdkacjswo), Jaemin Choi (jh05013),
and Heeju Wi (bb0711).

3.2 Gene representation
We could use AST format generated from Clang as our gene, how-
ever, we made the reprsentation simpler for efficient computation.
Our gene is a list of 2-tuples where each tuple indicates location
(line number) for acquiring lock (si), and location for releasing it
(ei). Here is the gene representing a program with n many locks:

G = {(s1, e1), (s2, e2), · · · , (sn , en)}

Generation and manipulation of genes are further described in the
following sections.

3.3 Population generation
As a prototype, we assume the following constraints:

(1) All scopes are explicitly given with curly braces.
(2) In the if-branches, for-branches, and while-branches, there

is no line break between the closing parenthesis and the
opening brace. There is no line break between the braces
and else.

Under these assumptions, we find a valid range [a,b], and modify
the code so that a lock is held at the end of the a-th line and released
at the end of the b-th line. A valid range to lock must satisfy the
following four conditions:

(1) The range must be contained in a function.
(2) There must be a reference to a global variable inside the

range. Otherwise there would be no need to place a lock.
(3) Every scope must either fully contain a range, or be fully

contained in a range. This is to prevent a thread from holding
its own lock or releasing a lock that it does not hold.

(4) There should be no return statement in the range. This is
to prevent a thread from finishing while holding a lock.

For example, consider the following code:

1 in t a r r [1 0 0] ;
2 in t bar (in t n) {

MiniCS: Critical Section Minimisation in Concurrent Programming CS454 AI Based Software Engineering, 2019 Fall, KAIST

3 in t x = 0 ;
4 for (in t i = 0 ; i <= n ; ++ i) {
5 a r r [i] = x ;
6 x+= i ;
7 }
8 return a r r [n] ;
9 }

A range [4, 5] is valid; in this case, we hold and release a lock right
before and after executing arr[i] = x. On the other hand, [1, 9]
is invalid because it is not contained in a function. [5, 6] is invalid
because there are no global variables. [2, 5] is invalid because the
scope inside the for loop neither contains [2, 5] nor is contained in
[2, 5]. Finally, [7, 8] is invalid because it contains return.

We use Clang AST to detect the references to global variables.
Each condition is checked by the AST matcher with the following
procedures:

• A global variable reference is detected by a DeclRefExpr
node, which has an ancestor FunctionDecl node, and refers
to a VarDecl node with the hasGlobalStorage property.

• A scope in a function is detected by a CompoundStmt node.
• A return statement in a function is detected by a ReturnStmt
node.

After finding all references to global variables, all return state-
ments, and all scopes, we output all possible valid ranges in the
program. To generate a population, we choose zero or more valid
ranges such that no two ranges with the same kind of lock do not
intersect.

3.4 Mutation
We forced the genes used in the genetic algorithm to have only a
valid lock range. For this reason, a difficulty arises in mutation. If
any of the lock ranges are changed randomly, invalid lock ranges
can be created. As such, mutations should not change the given
gene freely but should give only limited changes. To solve this
problem, we need to look at the following facts.

(1) Gene is a set that has a lock range as an element.
(2) If there is a setU with all possible lock ranges, then all genes

are a subset ofU .
(3) The elements of the gene do not intersect with each other.
We generate U using clang AST. And, U is needed for the mu-

tation to work properly. After making changes to the gene, the
changed gene must still be a subset of U for this mutation to be
valid. We used two methods under these conditions.

The first way is to add a lock. Let’s say G is the gene that we
want to mutate. Create G′ by selecting an element of U that does
not intersect G and adding it to G. G′ is still a subset ofU and the
elements do not intersect with each other. Thus, G′ is a valid gene.

The second way is to remove one lock. Create G′ by removing
one of the elements ofG . SinceG′ is a subset ofG ,G′ is also a subset
of U . And the elements of G′ do not intersect each other. Thus, G′

is a valid gene.

3.5 Crossover
Because we force only valid genes as in mutations, we need to
prove that the altered gene is still valid at the crossover. We used a

single-point crossover. We have sorted the range of genes to make
implementation easier. Assume that applying the crossover to the
following two genes G0 and G1.

G0 = {(s1, e1), (s2, e2), · · · , (sn , en)}

G1 = {(l1, r1), (l2, r2), · · · , (lm , rm)}

If split point x is set at G0, G0 is split to {(s1, e1), · · · , (si , ei)}
and {(si+1, ei+1), · · · (sn , en)}, to satisfy ei ≤ x ≤ si+1.

G1 is divided in the same way. However, if G1 has (lj , r j) which
satisfies lj ≤ x ≤ r j , there is a problem. We can’t divide a lock
range with (lj ,x), (x , r j). In the code below, you can see that if you
divide (1, 6) by (1, 4), (4, 6), you get an invalid lock.

1 in t i = 0 ;
2 cn t = 0 ;
3 while (i < 1 0) {
4 cn t = cn t + i ;
5 i = i + 1 ;
6 }

We decided to merge them instead of split. Assume that we got
the following children after crossover G0 and G1.

{(s1, e1), · · · , (si , ei), (lj+1, r j+1), · · · , (lm , rm)}

{(l1, r1), · · · , (lj , r j), (si+1, ei+1), · · · , (sn , en)}

There is a possibility of overlap between (si , ei) and (lj+1, r j+1).
The same is true between (lj , r j) and (si+1, ei+1). In this case, the
problem can be solved by combining the two ranges together. If
(x0,y0) and (x1,y1) are in U , (min(x0,x1), max(y0,y1)) also are
in U . There is no return or part of the for-statement between
(x0,y0) and so on between (x1,y1). For this reason, even if the two
ranges are combined, the return or for-statement is not included
and all of the valid lock conditions are satisfied.

3.6 Fitness evaluation
Since our goal is to build code "without data race" and has "minimum
lock interval", we have two objective for fitness evaluation. Between
two of themwe have tomake the code data race free and then reduce
the lock interval, so we are going to give priority to data race. It
means that if we have fitness (a,b)which a stands for data race and
b stands for lock interval, we compare a first and then compare b if
they are same.

3.6.1 Data race free (RQ1). First objective is number of "racing
sets". The term "racing set" means the set of two lines that have
data race. Since we need data race free code, we need to minimize
the number of racing sets to 0. And this number can be obtained by
data race detector, ThreadSanitizer [5]. It’s part of Clang that can
detect data race for given code. The detection report will be offered
like the sample below:

1 WARNING: Th r e a d S a n i t i z e r : d a t a r a c e
2 Write o f s i z e 4 a t 0 x7 f e 3 c 3 07 5190 :
3 #0 bar1 () s imp l e _ s t a c k 2 . cc : 1 6
4 #1 Thread1 (void ∗) s imp l e _ s t a c k 2 . cc : 3 4
5
6 P r ev i ou s read o f s i z e 4 a t 0 x7 f e 3 c 3 07 5190 :
7 #0 bar2 () s imp l e _ s t a c k 2 . cc : 2 9
8 #1 main s imp l e _ s t a c k 2 . cc : 4 1

CS454 AI Based Software Engineering, 2019 Fall, KAIST Hyunsu Kim, Jaemin Yu, Doam Lee, Jaemin Choi, and Heeju Wi

This report gives us four racing sets (16, 29), (16, 41), (34, 29),
(34, 41) that each (a,b)means a-th line and b-th line have data race.
Since the detection result of ThreadSanitizer depends on execution
order of threads, we execute ThreadSanitizer for every possible
execution orders (for n threads, execute for n! times) and count the
number of distinct racing sets.

3.6.2 Lock interval (RQ2). Second objective is number of ma-
chine instructions between locks(including themselves). Measuring
actual execution time is noisy and can be affected by environment,
so we use the number of machine instruction instead of execution
time.

The number is measured by using GDB stepi function. It runs
the program step by step(step means machine instruction) and
count the number of them between locks. "Between locks" means
containing locks themselves two, because locking and unlocking
affects runtime too. More specifically, for given part of code:

16 in t i ;
17 p thread_mutex_ lock (&mutex_ lock) ;
18 for (i = 0 ; i < 3 ; i ++) {
19 cn t ++ ;
20 }
21 p thread_mutex_un lock (&mutex_ lock) ;
22 return NULL ;

It locks on line 17, and unlock on line 21. So on GDB, we set
breakpoint on line 17 and execute stepi until the execution of
unlock on line 21 ends. Now if we count every instructions, it
will be the number of machine instructions between locks. On
this sample code, it executes 148 instruction between two locks.
Additionally, if we change thread during execution the number of
execution won’t be measured properly, so it’s important to execute
only one thread at a time.

4 EVALUATION
For the evaluation, we will check whether the program works as ex-
pected for given test codes and compare the result with optimal solu-
tion. The result of program is given in list [(s1, e1), (s2, e2), ..., (sn, en)]
which each (si, ei) states for locking range. And the fitness will be
given in tuple (a,b) where a is number of racing sets detected
by ThreadSanitizer and b is the number of machine instructions
executed between locks.

4.1 easytest
"easytest.cpp" is short test to check whether the program considers
the number of machine instructions of locks themselves. It has two
versions, one iterates for statement for one time, and the other
iterates three times. The part of first version is like below:

16 in t i ;
17 for (i = 0 ; i < 1 ; i ++) {
18 cn t ++ ;
19 }
20 return NULL ;

And this is the second version:

16 in t i ;
17 for (i = 0 ; i < 3 ; i ++) {
18 cn t ++ ;
19 }
20 return NULL ;

For two tests, line 20 causes data race so we have to protect
it by lock. There are two choices: place lock inside or outside of
for-statement. Since locking and unlocking acquires some machine
instructions too, for the second version if we place lock inside for-
statement the lock range will cover smaller amount of code. But
lock interval will be longer because locking and unlocking will be
performed for three times. As a result, the first version produced
lock range [(17, 18)] and second produced [(16, 19)]. It shows that
the program considers locking instructions properly.

4.2 global
Since "easytest.cpp" is very short, it easily came out with optimal
lock range. Now we have longer test "global.cpp" with 106 lines.
For this test we are going to check that the program successfully
creates code without data race and reduces lock interval. Then we’ll
compare the output with optimal lock range.

First, let’s see whether the program works properly: prevent
data race and minimise lock interval. Initial population starts with
best lock ranges [(49, 56), (57, 65), (65, 67), (71, 82), (82, 85), (89, 90),
(94, 97), (97, 99)] with 0 data race and 3540 machine instructions.
Usually the program starts with lock range that covers almost every
part of the code to keep it data free. After 10 generations with 10
candidates, the program comes out with output lock range [(51,
58), (64, 65), (65, 67), (72, 78), (78, 82), (82, 84), (89, 90), (90, 94), (94,
97)] with 0 data race and 2274 machine instructions. We can easily
observe that the program excluded the ranges that don’t have to be
protected and reduce the lock interval properly.

Next, let’s compare the best output with optimal lock range. The
optimal solution is [(51, 67), (72, 84), (89, 97)]. The optimal solution
and program’s output have two differences:

(1) Program did not detect the range (60, 64) that causes data
race.

(2) Adjacent ranges were merged in optimal solution.
First difference is critical because missing data race can result as

wrong code that has potential data race but reported to be data race
free. This problem is caused by ThreadSanitizer, so it can be solved
by using better data race detector. Second difference is problem of
our GA method. Separating adjacent ranges that can be merged
causes more locks to be used, and results in increase of lock interval.
To resolve this problem, adding merge to mutation operator would
be helpful.

4.3 Running time
We ranminiCS using an Ubuntu virtual machine using 4GBmemory
and 2 processor cores, on a laptop with Intel(R) Core(TM) i7-8550U
CPU 1.80GHz and 8.00GB RAM. (RQ3)

We ran easytest.cpp three times. The running time was 422, 394,
and 512 seconds, the average being 442.67 seconds (7 minutes 22.67
seconds). We also ran dining.cpp three times, with the running

MiniCS: Critical Section Minimisation in Concurrent Programming CS454 AI Based Software Engineering, 2019 Fall, KAIST

time 175, 126, and 169 seconds, the average being 156.67 seconds
(2 minutes and 36.67 seconds). When we ran global.cpp, however,
less than 10% progress was done in 20 minutes.

5 CONCLUSION
On evaluation section we observed that our program produced data
race free code with short lock interval successfully. On "global.cpp",
it reduced the lock interval to 2/3 of initial lock range that covers
every code while keeping the code data race free. Since we have
observed that our code works fine, now it’s time to discuss problems
and possible improvements of our program.

5.1 Observed problem
There are two problems of our program: ThreadSanitizer misses
data race, significant slowdown of the program. For ThreadSanitizer
error, as discussed on evaluation section we may use better data
race detector(will be discussed later).

The program is basically slow because ThreadSanitizer detects
data race on runtime and causes 5x to 15x of time overhead. But still,
there are possible way to avoid slowdown. There are two reasons
of slowdown that we can deal with:

(1) ThreadSanitizer should be executed for every possible exe-
cution order of threads.

(2) GDB runs the program step by step between locks.

Now let’s discuss the solution of these problems. For the missing
data race and first problem of slowdown, wemay use other data race
detection program. There are two choices: Static(code) analyzer and
RaceFuzzer [4]. First, static analyzer detects data race depending
on the code, not on runtime. So it has no time overhead at all and
faster than dynamic detector. But it has problem that it can come
up with false alarm that detects data race can’t be observed on
runtime. And second, RaceFuzzer is similar with ThreadSanitizer
but it dynamically chooses random thread unlike original one. So it
does not depend on execution order andwe can execute the program
only once. But it has problem too, that detection is probabilistic and
takes more time on one execution because it dynamically schedules
threads.

And the second problem of slowdown can be resolved by using
"Intel process tracing", namely "Intel-pt". It stores the trace of ma-
chine instruction execution with very low time overhead, so we
can measure lock interval faster than GDB using Intel-pt. Since
machine instruction counting with GDB takes a lot of time, it can
significantly reduce time overhead for overall project.

5.2 Possible improvements
First, we may use multiple kinds of locks. Our current version
uses only one kind of lock for any kind of locks, but it’s inefficient
because it will make two different locks that protects different
memory location to wait for each other. So using multiple kinds
of locks will make multithreaded program even more faster. It will
need to figure out which variable the lock is protecting, so this
improvement will need more code analysis and harder GA.

Second, we need to detect deadlock. Our current version does
not detect deadlock, but deadlock is very serious problem for multi-
threaded programs. To deal with it, we can use ThreadSafetyAnaly-
sis of Clang. It’s static test, so we can detect deadlock within short
time and drop the candidate codes that has deadlock issue.

Lastly, but not least, we can try coevolution with thread schedul-
ing. This needs support from control over kernel code which may
be necessary to use certain emulator like Qemu or Bochs. While
GA part remains the same, we add one more step to generate and
evolve schedule of thread interleavings that cause more lost update
problems or even deadlocks.

REFERENCES
[1] Bobby R. Bruce and Justyna Petke. 2018. RN / 18 / 04 Towards automatic generation

and insertion of OpenACC directives April 12 , 2018.
[2] Clang. 2018. Clang official website. https://clang.llvm.org/docs/

HowToSetupToolingForLLVM.html. [Online; accessed November-2019].
[3] Hyunsu Kim, Jaemin Yu, Doam Lee, Jaemin Choi, Heeju Wi. 2019. MiniCS. https:

//github.com/hyunsukimsokcho/miniCS. [Online; accessed December-2019].
[4] Koushik Sen. 2008. Race Directed Random Testing of Concurrent Programs.

In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’08). ACM, New York, NY, USA, 11–21. https:
//doi.org/10.1145/1375581.1375584

[5] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data Race
Detection in Practice. In Proceedings of the Workshop on Binary Instrumentation
and Applications (WBIA ’09). ACM, New York, NY, USA, 62–71. https://doi.org/
10.1145/1791194.1791203

https://clang.llvm.org/docs/HowToSetupToolingForLLVM.html
https://clang.llvm.org/docs/HowToSetupToolingForLLVM.html
https://github.com/hyunsukimsokcho/miniCS
https://github.com/hyunsukimsokcho/miniCS
https://doi.org/10.1145/1375581.1375584
https://doi.org/10.1145/1375581.1375584
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203

	Abstract
	1 Introduction
	2 background
	2.1 Data race
	2.2 Machine instructions

	3 Experiment design
	3.1 Environment setting
	3.2 Gene representation
	3.3 Population generation
	3.4 Mutation
	3.5 Crossover
	3.6 Fitness evaluation

	4 Evaluation
	4.1 easytest
	4.2 global
	4.3 Running time

	5 Conclusion
	5.1 Observed problem
	5.2 Possible improvements

	References

